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Abstract. The convergence properties of Gaussian
orbitals are studied by considering a very simple system,
the hydrogen atom. We have variationally optimized
even-tempered basis sets containing up to 60 s functions
for the ground state and the first excited S state of the
hydrogen atom, to an accuracy of 1013 Ey,. In addition,
we have freely optimized the exponents in basis sets
containing up to 12 Gaussians. We have studied the
convergence of the total energy, the kinetic energy, the
extent of the atom as measured by 72, and the Fermi-
contact interaction at the nucleus in these basis sets as
well as in basis sets augmented with additional diffuse or
steep functions.
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1 Introduction

In most applications of quantum chemistry, the atomic
orbitals are expanded in a finite set of Gaussian-type
orbitals (GTOs), fixed on the atomic nuclei. The
GTOs were introduced by Boys in the 1950s [1], so as
to avoid the difficult integrations associated with
Slater-type orbitals (STOs) [2]. Since the shape of
GTOs is less suited to the description of molecular
electronic structure than the shape of STOs, many
more GTOs than STOs are needed to achieve the
same accuracy in the calculations. This is particularly
true for regions close to the atomic nuclei and in the
outer-valence region of the molecules. At the nuclei,
the GTOs have no cusp, making it difficult to
calculate accurately properties that depend on the
density in the vicinity of or at the nuclei — for
example, hyperfine coupling constants and indirect
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nuclear spin—spin coupling constants. Far away from
the nuclei, in the asymptotic region, the GTOs decay
too quickly, making the accurate description of
properties such as quadrupole moments and dipole
polarizabilities problematic.

Over the years, many standard basis sets of GTOs
have been introduced. Indeed, the large number of
GTO basis sets developed is in itself an indication of
the difficulties associated with their construction and it
has turned out to be impossible to develop a single,
universal set of GTOs suitable for the calculation of the
different properties of molecular systems [3, 4]. Instead,
families of basis sets have been proposed, in which the
parent basis is extended with special functions,
depending on the requirements on the calculations. For
example, for the calculation of polarizabilities and
spin—spin coupling constants, diffuse and steep func-
tions are added, respectively, according to certain
recipes.

The performance of GTO basis sets, with and
without additional functions, has been carefully
benchmarked by extensive calculations on molecular
systems, comparing either with experimental data or in
some cases with calculations in which the atomic
orbitals are represented numerically on a spatial grid.
Detailed studies of the energy convergence of GTOs
for several small molecules have also recently been
published [5, 6, 7].

In this paper, we investigate the performance of the
GTOs on the simplest of all systems: the hydrogen atom.
The obvious advantage of this system is that the exact
solutions are known, making it particularly easy to
measure the quality of the calculations. Although
properties related to chemical bonding and to the
polarization of the atomic charge in a molecular system
cannot be studied in this manner, the hydrogen atom
nevertheless offers us a unique opportunity to study the
GTO description of many one-electron properties, such
as the density at the nucleus and in the outer-valence
region. In addition, the convergence of GTOs in the
hydrogen system has previously been studied theoreti-
cally [8].



2 Computational details

All calculations were carried out using Mathematica,
which allows the use of arbitrary precision in the
calculations. To achieve the necessary precision in our
results, the calculations — in particular, the diagonaliza-
tions — were carried out using 70-digit precision.

3 Basis-set optimization

In our calculations, we determined the exponents o; of
the GTOs

Gi(r) = exp(—or?) (1)

by energy minimization. The minimization was carried
out in two different manners. In the even-tempered basis
sets [9, 10], the exponents form a geometrical series

o =af ! i=12..,N, 2)

with N < 60. In addition, we constructed fully optimized
basis sets, where all exponents oy, ap, ...y were opti-
mized independently.

The two-dimensional optimization of the even-tem-
pered basis sets is a rather simple task — in particular, for
the electronic ground state, for which multiple solutions
were observed only in a few cases. The values of « and f§
as functions of the number of basis functions, N, opti-
mized for the ground state are plotted on a logarithmic
scale in Fig. 1. By contrast, for the first excited state, the
number of local minima appears to be proportional to
the number of atomic orbitals (AOs) N, making the
optimization of the basis set more difficult than for
the ground-state — see Fig. 2, where the value of « at the
different local minima is plotted. With two exceptions,
the global minimum corresponds to the solution with the
largest value of a.

The full optimization of basis sets with no constraints
on the exponents is more difficult than the optimization
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Fig. 1. Logarithmic plot of a (circles) and f (squares) optimized for
the ground state, as a function of N. The solid circles and squares
represent the minima having the lowest energy for each value of N
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of even-tempered basis sets, at least for basis sets con-
taining more than ten AOs. The problems arise chiefly
because it is difficult to provide a good starting point for
the optimization. For small N, we used the exponents of
the even-tempered basis sets as our starting guess; for
large N, it became necessary to determine the initial
exponents by extrapolation from the smaller, fully
optimized sets. Combined with the large number of
conjugate-gradient iterations needed for convergence,
these problems restricted the size of the fully optimized
basis sets to 12 for all states. The exponents of the fully
optimized basis sets are plotted for the ground state in
Fig. 3 together with the exponents of the corresponding
even-tempered basis sets. A similar plot for the expo-
nents of both basis sets optimized for the first excited
state can be found in Fig. 4.
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Fig. 2. Logarithmic plot of « as a function of N, optimized for the
first excited state. Only solutions where o > 3.0 x 10~ are shown.
The solid circles represent the minima having the lowest energy for
each value of N
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Fig. 3. Comparison of the exponents of the even-tempered basis set
(open diamonds) and the fully optimized basis set (solid diamonds)
for the ground state up to N = 12. Note the logarithmic scale
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Fig. 4. Comparison of the exponents of the even-tempered basis set
(open diamonds) and the fully optimized basis set (solid diamonds)
for the first excited state up to N = 12. Note the logarithmic scale

The two-parameter even-tempered basis sets and
the N-parameter fully optimized sets constitute two
extremes of basis-set parameterization. There are
obviously other choices, for example, the four-parameter
well-tempered basis sets of Huzinaga and coworkers
[11, 12]. Also, Petersson et al. [13] very recently pre-
sented a generalized parameterization, containing the
even-tempered and fully optimized basis sets as special
cases. Nevertheless, in the present study, only even-
tempered and fully optimized sets of exponents are
considered.

4 Ground-state optimized basis sets
4.1 Even-tempered basis sets

4.1.1 The structure of the basis sets

The total electronic energy and the values of o and f8
for a selected number of basis functions are listed in
Table 1. The results are in complete agreement with
the total energies and the even-tempered parameters
for the hydrogen atom up to N =10 reported by
Schmidt and Ruedenberg [10]. As expected, the values
of o and f decrease with increasing N — see also
Fig. 1. The decrease is most pronounced for small N;
for large N, the plots approach straight lines, indicat-
ing that o and f decrease exponentially in N or in
some power of N. We note, however, a discontinuity
in the plots between N =25 and N =26. For these
values of N, there are in fact two independent minima
in the energy as a function of o and f; by contrast, for
all other N, the energy function has only one
minimum, as we have verified by inspection of two-
dimensional energy plots. Although, therefore, the
optimization of « and f is mostly a straightforward
process for the electronic ground state, multiple
minima may occur for certain N, making the optimi-
zation somewhat more difficult.

Table 1. Total energy (in units of £}) along with values of « and f
optimized for the ground state

N Energy o p

2 —0.4858127166162751 0.2015 6.6119
3 —0.4958428146670139 0.1630 4.8807
4 —0.4987518973453031 0.1348 4.0742
5 —0.4995626726176849 0.1176 3.5822
6 —0.4998405424527974 0.1042 3.2577
7 —0.4999371721008941 0.0945 3.0214
8 —0.4999742933524680 0.0865 2.8437
9 —0.4999889793017220 0.0802 2.7026
10 —-0.4999951119087391 0.0748 2.5888
20 —0.4999999923812162 0.0458 2.0211
30 —0.4999999999458578 0.0274 1.7989
40 —0.4999999999993552 0.0250 1.6703
50 —0.4999999999999871 0.0229 1.5873
60 —0.4999999999999996 0.0210 1.5290
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Fig. 5. The logarithm of the absolute error in the total energy (in
units of E}) as a function of N for the ground state (solid line) and
the first three excited states using basis sets optimized for the
ground state (left plot) and for the first excited state (right plot)

4.1.2 The total energy

The total energy of the hydrogen atom is given by
—1n72Ey, where n is the principal quantum number. The
error in the ground-state energy and the energies of the
three lowest excited states on a logarithmic scale are
plotted in Fig. 5 as functions of N. For the ground state,
the energy decreases as discussed by Kutzelnigg and
coworkers — namely, exponentially in v/N. For N = 10,
which corresponds to the number of uncontracted GTOs
in a large molecular basis set such as the correlation-
consistent sextuple-zeta basis cc-pV6Z of Dunning [14],
the error in the ground state is 2.2 x 107%E;, — see
Table 2. In the largest basis with N = 60, the ground-
state error is less than 1073 Ey,. By contrast, the errors
are much larger for the excited states: 4.9 x 107> and
1.3 x 1072E;,. As in the plots of o and f, we note a
discontinuity from N = 25 to N = 26, which is particu-
larly noticeable for the excited states. Clearly, a basis set
energetically optimized for the ground state is ill suited
to describe excited states.

Let us now see how the description of excited states
can be improved by augmenting the optimized ground-
state basis sets with diffuse functions. The absolute
errors in the energy at N = 10 and N = 60 for the three
lowest states, with up to four additional diffuse or steep
functions, are listed in Table 2. Their exponents were



Table 2. The absolute error in the energy (in units of Ey), (r?) (a3)
and Fermi-contact (FC) interaction («>Ey) for the ground state and
the first two excited states for N =10 and N = 60. The even-
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tempered basis sets (ET10 and ET60) for the ground state were
augmented with up to four additional diffuse functions and up to
four additional steep functions

Basis Ground state Ist excited state 2nd excited state
Energy (r?) FC Energy ) FC Energy ) FC
ET10 49x107% 39x10* 41x102 57x1072 2.5x 10! 26x 107" 62x107" 2.0 x 107 1.3 x 10°
1 dif. 49x107% 6.0x107* 41x102 20x107° 7.2x10° 14x1072  1L1Ix107"  1.7x10? 3.5x 107!
2 dif. 45x107° 42x10% 41x102 1.6x107° 19x107" 50x10% 72x107% 88x10! 4.1 x 1072
3 dif. 44x107° 39x10* 41x102 80x10° 52x102 50x103 1.0x10* 82x10° 1.6 x 1073
4 dif. 44x107° 39x10% 41x102 62x10° 38x102 50x103 73x107° 38x10° 1.4 %1073
1 stp. 28x107% 38x107* 25x102 57x102 2.5x10' 26x 107" 62x107" 2.0 x 102 1.4 x 10°
2 stp. 23x107%  37x107* 1.6x102 57x1072 2.5x10' 27x 107" 62x107" 2.0 x 107 1.4 x 10°
3 stp. 22x10°0  37x10% 97x103 57x102 25x100  27x107" 62x107" 20x10>  1.4x10°
4 stp. 22x107%  37x107* 60x103 57x102 2.5x10' 27x 107" 62x107" 2.0 x 102 1.4 x 10°
ET60 361071 23 %1073 1.7x107° 49x107° 51x107" 6.6x10* 13x102 9.5x 10 4.9 x 1072
1 dif. 3.6x 10716 25%x10713  1.7x107° 1.0 x 10-6 2.7 %1072 1.8x 1073 2.9 %1073 5.1 x 10! 1.6 x 1072
2 dif. 34x107 14x1078 1.7x107° 3.0x107° 23x 1074 2.0x 107 3.6 x 1074 1.6 x 10! 28 %1073
3 dif. 33x1071% 92107 1.7x107° 3.1x1073 7.7x10% 21x10% 1.5x107° 1.8x10° 1.8 x 1074
4 dif. 33x 10716 72x107% 1.7x107° 47%x1071% 23x10710 2.1 x10°° 8.5x 1078 3.2 %1072 9.8 x 1077
1 stp. 27x10716 23x1071% 13x10° 49x105 51x107" 66x10% 13x102 95x100  49x 102
2 stp. 22x10716 23x107% 1.1x10°5 49x105 51x107" 66x10% 13x102 95x100  49x 102
3 stp. 2010716 23x10713 88x10% 49x107° S51x107' 66x10* 13x102 9.5x 10 4.9 x 1072
4 stp. 1.8x1071¢ 23x1078 7.1x107¢ 49x1075 51x1071 66x10% 13x102 95x100 4.9 x 1072
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Fig. 6. The logarithm of the error in the total energy (Ey) of the
first excited state, using the basis sets optimized for the ground state
(solid line) and augmented with up to four additional diffuse
functions (dashed lines)

chosen as an even-tempered extension to those in the
original, even-tempered basis sets.

While the augmentation with diffuse functions has
very little effect on the ground state, the improvement is
significant for the excited states. Still, even with four
diffuse functions added, the second excited state is only
moderately well described; for higher excited states (not
included in the table) the description is still poor. We
have also investigated the effect of augmenting the basis
sets with steep functions in an even-tempered manner.
Unlike for the diffuse augmentation, the addition of
steep functions has virtually no effect on the excited-
state energies. For the ground state, there is a slight
improvement for N =10 and N = 60 in Table 2, the
error being reduced by a factor of about 2 upon addition
of four steep functions.

Fig. 7. The logarithm of the error in the total energy (Ey) for the
ground state and functions of the form aexp(—b\/ﬁ) fitted to
N < 25 (dashed line) and to N > 26 (dotted line)

The error in the energy for the first excited state as a
function of N, for basis sets augmented with up to four
diffuse functions, is plotted in Fig. 6. This plot clearly
illustrates the importance of diffuse functions for the
description of excited states. The addition of a single
diffuse function reduces the error by more than an order
of magnitude — a reduction which otherwise would re-
quire a large extension of the basis set. Another obser-
vation we make from this plot (in particular, with two
diffuse functions added) is that the error in the energy of
the first excited state does not always decrease with
increasing N. This is of course not surprising in the sense
that this basis has not been variationally determined
with respect to the first excited state. Still, this behaviour
should be kept in mind when excited-state calculations
are carried out with ground-state optimized basis sets.



128

10000 r T T T 1 10000

100 £ 100 fro,

0.01 0.01
0.0001 4 0.0001

1e-06 1 1e-06

1e-08 1 1e-08
1e-10 1 te-10 |
1e-12 1 te12 |
1e-14 . . A d . 1e-14 .
10 20 30 40 50 60 10 20 30 40 50 6C
N N

Fig. 8. The logarithm of the absolute error in () (a3) as a function
of N for the ground state (solid line) and the first three excited states
using basis sets optimized for the ground state (left plot) and for the
first excited state (right plot)

Kutzelnigg has previously shown that, for an opti-
mized even-tempered basis, the error in the energy of the
hydrogen atom is given by aexp(—b+/N) [8, 15], where a
and b are positive real parameters and N the number of
GTOs. If such a functional form is fitted to our data in
the full range 3 < N <60 (N = 2 is left out), a reason-
ably good fit is obtained with a =41.4+ 3.1E;, and
b = 5.0354+0.014. However, the fitted curve systemati-
cally overestimates the errors for small and large N and
likewise underestimates them for intermediate values.
Recalling the kinks in the optimized « and f parameters
in Fig. 1 and in the corresponding energies in Fig. 5, a
near-perfect agreement is obtained by carrying out two
separate fits, one for 3 <N <25 and one for
26 <N <60 — see Fig.7. For N <25, the fitted
parameters are a = 22.1 + 1.3E, and b = 4.866 +0.016;
for N >26, we obtain a=160.54+2.0E, and
b=5.2424+0.002. In short, our calculations are in
complete agreement with the asymptotic form derived by
Kutzelnigg, although, somewhat unexpectedly, a single
set of parameters cannot be used universally, for all N.
For N < 60, there are two separate sequences of even-
tempered ground-state basis sets; for N > 60, more such
sequences may exist.

4.1.3 The kinetic energy

For the variationally optimized even-tempered basis
sets, the conditions for the virial theorem are satisfied.
The error in the kinetic energy is therefore identical to
the error in the total energy (but of opposite sign).
However, upon augmentation, these conditions no
longer hold; consequently, the error in the kinetic energy
becomes larger than the error in the total energy,
typically by a factor of 3. For the excited states, the
difference between the errors in the total and kinetic
energies is even larger, by up to 2 orders of magnitude.
Nevertheless, the convergence pattern of the kinetic
energy is similar to that of the total energy.

4.1.4 The expectation value of 7>

Rapid convergence of the energy does not in any way
guarantee the convergence of other properties. In fact, it
has been shown that it is possible to construct wave
functions arbitrarily close to the exact wave function,

1e-10 |

Fig. 9. The logarithm of the absolute error in (?) (a3) for the first
excited state, using the basis sets optimized for the ground state
(solid line) and augmented with up to four additional diffuse
functions (dashed lines)

whose errors in a given property are arbitrarily
large [16].

We first turn our attention to the expectation value of
>, which represents a measure of the size of the
hydrogen atom. For S states (which we consider here),
the exact result for the hydrogen atom is %n“ —l—%nz in
units of a%. Clearly, the excited states rapidly become
very diffuse.

The absolute value of the error in (r?) is plotted in
Fig. 8. For the ground state, the error in (r?) displays
oscillations, whose nodes can be seen as kinks in the
plotted absolute errors. However, the overall conver-
gence is rapid, with an error typically 2 orders of mag-
nitude larger than that in the total energy. By contrast,
the description of (r?) is much poorer for the excited
states — see Table 2. Even for N = 60, the errors for the
first and second excited states are 0.5¢} and 954,
respectively, compared with 2.3 x 107"°a} for the
ground state.

For the excited states, it is impossible to converge <r2>
without the addition of diffuse functions. The error in
(r?) for the first excited state, with up to four diffuse
functions added, is plotted in Fig. 9. Clearly, the con-
vergence is unsatisfactory for basis sets with less than
two diffuse functions added; with four diffuse functions,
convergence is smooth, with an error of 2.3 x 1071%3
for N = 60. For the second and third excited states, even
four diffuse functions are insufficient.

4.1.5 The Fermi-contact interaction

The Fermi-contact interaction, which for exact S states
is given by %n3«’Ey,, where « is the fine-structure
constant, is very difficult to describe accurately. For the
ground state, the even-tempered basis with N = 10 gives
an error of 4.1 x 1072¢2E;, — see Table 2. Even our best
calculation, with N = 60 and four steep functions added,
gives an error of 7.1 x 107%x?Ey,. Interestingly, this error
is larger than the error of 9.8 x 10~ 7o?Ey, in the Fermi-
contact interaction in the second excited state, obtained
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Fig. 10. The logarithm of the absolute error of the FC interaction
(o?Ey) as a function of N for the ground state (solid line) and the
first three excited states using basis sets optimized for the ground
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Fig. 11. The logarithm of the absolute error of the FC (¢2Ey) as a
function of N for the ground state using an even-tempered basis set
(solid line) and even-tempered basis sets with up to four steep
functions added

using the basis set with N = 60, but augmented with four
diffuse rather than steep functions. If only steep
functions are added, the Fermi-contact interaction of
the excited states is poorly described. Clearly, there is no
point in augmenting with steep functions unless the
overall description of the electronic state is reasonably
good. The logarithm of the absolute error in the
calculated Fermi-contact interaction for the (unaug-
mented) even-tempered basis sets is plotted in Fig. 10.
Comparing with Figs. 5 and 8, we note the much slower
convergence of the Fermi-contact interaction — in
particular, for the ground state.

To illustrate the effect of core functions on the Fermi-
contact interaction of the ground state, the absolute er-
ror obtained for even-tempered basis sets with up to four
additional steep functions is plotted in Fig. 11. For small
basis sets, there is a significant but somewhat unsys-
tematic improvement in the calculated Fermi-contact
interaction with the addition of steep functions. How-
ever, to achieve small errors, the size of the underlying
even-tempered basis set is more important than the
addition of steep functions.
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Table 3. The total energy (£p) and the lowest and the highest
exponents of fully optimized basis sets for the ground state

N Energy o o,
2 —0.4858127166162751 0.2015 1.3325
3 —0.4969792527050514 0.1514 4.5004
4 —0.4992784057143474 0.1219 13.0107
5 —0.4998098322318887 0.1031 34.0613
6 —0.4999455703966486 0.0900 82.9218
7 —0.4999832977891566 0.0803 190.6878
8 —0.4999945613907438 0.0729 418.5580
9 —0.4999981360379370 0.0670 883.5055
10 —0.4999993319768574 0.0621 1803.4949
11 —0.4999997509651780 0.0581 3575.6745
12 —0.4999999038468845 0.0547 6909.3748

4.2 Fully optimized basis

4.2.1 The structure of the basis set and the total energy

The energy and the lowest and highest orbital exponents
for the fully optimized ground-state basis sets are listed
in Table 3; for plots of the exponents, see Fig. 3.
Comparing the fully optimized exponents with the
corresponding even-tempered exponents (located on
the same vertical line in the figure), we note that the
largest exponents of the fully optimized basis are larger
than the largest exponents of the ground-state even-
tempered basis. Conversely, we also see that the smallest
exponents of the fully optimized basis are smaller than
the smallest exponents of the even-tempered basis. In
short, for a given N, there is a larger spread of exponents
in the fully optimized basis than in the even-tempered
one. Intuitively, we can understand this by realizing that
a full optimization of all exponents enables each
exponent to do a better job at representing the electronic
state in a given region, allowing the nearby exponents to
move into regions further away. We note, however, that
the separation between the exponents increases only in
the core region (i.e., for large exponents) — in the valence
region, it decreases slightly.

To illustrate this behaviour, we consider the expo-
nents of the basis sets with N = 5. In the even-tempered
case, the exponents are given by 0.118, 0.421, 1.509,
5.406, and 19.365. By comparison, the corresponding
fully optimized exponents are 0.103, 0.327, 1.165, 5.124,
and 34.061. The largest exponent of the fully optimized
basis (34.061) is almost twice as large as the largest
exponent of the even-tempered basis — in fact, it is
comparable to the largest exponent of the even-tempered
N = 6 basis (38.232). Likewise, the smallest exponent of
the fully optimized N = 5 basis (0.103) is smaller than
the smallest exponent of the even-tempered N = 6 basis
(0.104).

By construction, a fully-optimized basis gives a lower
total energy than the corresponding even-tempered
basis. The improvement in the energy is illustrated in
Fig. 12, where, for the two types of basis sets, the errors
in the total energy, in (r*), and in the Fermi-contact
interaction are plotted as functions of N. Obviously, for
N =2, the error in the energy is identical for the even-
tempered and fully optimized basis sets. As N increases,
the error decreases more rapidly for the fully optimized
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Fig. 12. The logarithm of the absolute errors of the total energy
(En, circles), the expectation value of * (a3, squares), and the FC
interaction (o0?Ey, diamonds) for even-tempered (open symbols,
dashed line) and fully optimized (filled symbols, solid line) as
functions of the number of exponents, optimized for the ground
state

basis sets than for the even-tempered sets — for example,
whereas, for N = 5, there is factor of 2 between the er-
rors; for N = 10, the difference is about an order of
magnitude. We also note that, in the fully optimized
case, the error is reduced by a factor of 4.7 from N =2
to N =3; from N =11 to N = 12, the factor is 2.6. For
the even-tempered basis; the corresponding factors are
3.4 and 2.1, respectively. In short, with increasing N, the
performance of the fully optimized basis set improves
relative to that of the even-tempered basis set. This
behaviour may be understood from the observation that,
in the even-tempered basis, the « and f parameters are
effectively determined by the optimization of the mid-
range exponents, whose contribution to the energy is
largest. By contrast, in the fully optimized basis set, each
added exponent provides a new degree of freedom, fur-
ther reducing the energy relative to that of the corre-
sponding even-tempered basis.

The effect of adding diffuse and steep functions to the
fully optimized basis sets with N = 10 is illustrated in
Table 4. While little improvement is observed for the
(already well-described) ground-state energy, there is a

clear improvement in the energy of the first excited state
upon the addition of diffuse functions. As in the even-
tempered case, two diffuse functions must be added for
an error similar to that of the ground state. Additional
diffuse functions give only a marginal improvement in
the description.

In our discussion of even-tempered basis sets in
Sect. 4.1.2, we found that the errors in the ground-state
energies are well represented by two fits of the general
form aexp(—bv/N), as derived by Kutzelnigg. For basis
sets optimized using more than two parameters, Kut-
zelnigg suggested the slightly more general form aexp
(—=bN°) [8], where, for faster than even-tempered con-
vergence, % < ¢ < 1. Fitting this functional form to the
errors of the fully optimized ground-state basis sets
(again leaving out N = 2) in Fig. 12, we obtain excellent
agreement with a = 3.5+ 0.3E,, b= 3.44+0.06, and
¢ = 0.653 +0.005. With this form, we predict that 20
and 37 fully optimized GTOs are needed for errors less
than 1079 and 10~1° Ej,, respectively, compared with 28
and 58 even-tempered GTOs.

4.2.2 The expectation value of > and the Fermi-contact
interaction

Full optimization of the exponents improves not only
the energy, but also other properties, such as (?) and the
Fermi-contact interaction. From Fig. 12, we note that,
for the Fermi-contact interaction, the improvement
upon full optimization is very systematic but less
pronounced than for the energy. For (r?), the conver-
gence is oscillatory for the even-tempered basis sets,
giving accidentally low errors for certain N; the fully
optimized basis sets, on the other hand, give a very
smooth convergence of the error in (r?), which, for
N =12, is an order of magnitude smaller than the error
obtained with the even-tempered basis.

From Table 4, we see that augmentation with diffuse
functions improves the description of (r?) in the same
manner as for the energy. Thus, whereas the improve-
ments are modest for the ground state, the augmentation
is critical for the first excited state, for which the error is
reduced by almost 5 orders of magnitude upon the
addition of two diffuse functions. For the second excited
state, the error in (r?) is very large, even with four diffuse
functions added.

Table 4. The absolute error in the energy (En), (%) (a3), and FC interaction («*Ej) for the ground state and the first two excited states for
N = 10. The fully optimized basis set (FO10) for the ground state is augmented with up to four additional diffuse functions and up to four

additional steep functions

Basis Ground state 1st excited state 2nd excited state
Energy () FC Energy () FC Energy () FC

FO10 6.7 x 1077 7.4 %1073 1.8 x 1072 3.1 x 1072 2.1 x 10! 1.5x 107! 3.8x 107! 1.9 x 102 8.4 x 107!
1 dif. 6.6 x 1077 49 x 1073 1.8 x 1072 1.3x 1073 5.5 x 10° 1.0 x 1072 7.9 x 1072 1.6 x 10? 2.5%x 107!
2 dif. 6.3 x 1077 2.8 x 1073 1.8 x 1072 1.5%x107°° 4.5 %1072 22 %1073 7.0 x 1073 8.5 x 10! 3.8 x 1072
3 dif. 6.3 x 1077 23 %1073 1.8 x 1072 1.0 x 107 1.0 x 1072 22 %1073 1.2x 107 1.5 % 10° 5.0 x 107
4 dif. 6.2 x 1077 22 %1073 1.8 x 1072 7.2 %1077 59 %1073 22 %1073 7.6 x 107° 5.4 % 107! 6.8 x 107*
1 stp. 49 x 1077 7.6 x 1073 7.5 % 1073 3.1 x 1072 2.1 x 10 1.6 x 107! 3.8 x 107! 1.9 x 10? 8.6 x 107!
2 stp. 48 x 1077 7.6 x 1073 2.8 x 1073 3.1 x 1072 2.1 x 10! 1.6 x 107! 3.8 x 107! 1.9 x 10? 8.6 x 107!
3 stp. 48 x 1077 7.6 x 1073 1.2x 1073 3.1 x 1072 2.1 x 10 1.6 x 107! 3.8 x 107! 1.9 x 10? 8.6 x 107!
4 stp. 48 x 1077 7.6 x 1073 52 % 107 3.1 x 1072 2.1 x 10! 1.6 x 107! 3.8 x 107! 1.9 x 10? 8.6 x 107!




Table 5. Total energy (£}) of the first excited state along with the
values of o and f§ optimized for this state

N Energy o p

2 —0.1168331639545620 0.01630 19.6916
3 —0.1221697382095309 0.02154 9.8583
4 —0.1233742263444045 0.02254 4.6854
5 —0.1243337330016185 0.02061 3.6698
6 —0.1246988390439473 0.01907 3.2163
7 —0.1248697651590596 0.01763 2.9285
8 —0.1249396870277564 0.01650 2.7302
9 —0.1249722590214700 0.01549 2.5821
10 —0.1249866995087120 0.01466 2.4668
20 —0.1249999805704430 0.00991 1.9606
30 —0.1249999997907418 0.00529 1.7578
40 —0.1249999999971520 0.00523 1.6345
50 —0.1249999999999351 0.00497 1.5563
60 —=0.1249999999999980 0.00466 1.5014

With regard to the Fermi-contact interaction, we first
note that, in the ground state, the addition of steep
functions has roughly the same effect on the error as
observed for (r*) upon the addition of diffuse functions.
As in the even-tempered case, the addition of steep
functions does not improve the description of the Fermi-
contact interaction in the first-excited state; in this case,
it is more important to add diffuse functions, so as to
improve the overall description of the excited state.

5 Excited-state optimized basis sets
5.1 Even-tempered basis

5.1.1 The structure of the basis set and the total energy

The total energies as well as the o and f parameters
optimized for the first excited state are given in Table 5.
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We recall from Fig. 2 that, for the excited-state energy,
the number of local minima with respect to variations in
o and f increases linearly with N, the number of AOs in
the basis. The solutions given in Table 5 correspond to
the global minimum for each N.

Comparing the even-tempered basis sets for the
ground and excited states in Tables 1 and 5, we first note
that o is much smaller in the excited-state basis. In fact,
for small N, the difference between the smallest expo-
nents is about an order of magnitude, explaining why it
was necessary to add at least two sets of diffuse functions
to the ground-state basis to obtain a reasonable
description of the lowest excited state. We also note that,
initially, the value of « increases with N, achieving a
maximum value of 0.023 for N =4. For N > 4, o de-
creases monotonically but there is a dramatic jump in o
between N = 27 and N = 28 —see Fig. 2. For N < 3, the
p parameter is very large compared with the ground-
state basis sets; however, for N > 6, it becomes smaller
than in the ground state, although the difference is small.

The absolute errors in the energy, in (?), and in the
Fermi-contact interaction for the even-tempered basis
sets with N = 10 and N = 60 are listed in Table 6. The
first thing to note is that, although these basis sets have
been optimized for the first excited state, the errors in
the ground-state energy are not much larger than those
in the excited-state energy. In fact, with four steep
functions added, the error for the ground state is
smaller than the corresponding error for the first
excited state.

It is instructive to compare the errors in the energies
obtained using the excited-state optimized basis sets in
Table 6 with the corresponding errors obtained using
the ground-state optimized basis sets in Table 2.
Whereas the ground-state optimized basis sets only give
a good description of the ground state (N = 60 gives
errors 3.6 x 10719, 4.9 x 10—, and 1.3 x 1072E, for the

Table 6. The absolute error in the energy (Ey), (%) (ag) and FC interaction (o?Ey,) for the ground state and the first two excited states for
N =10 and N = 60. The even-tempered basis sets (ET10 and ET60) for the first excited state are augmented with up to four additional

diffuse functions and up to four additional steep functions

Basis Ground state Ist excited state 2nd excited state
Energy ) FC Energy () FC Energy () FC

ET10 5.9 x 1073 8.2 x 107 1.1x 107! 1.3x 1073 2.8 x 1072 1.4 %1072 1.8 x 1072 1.2 x 10? 7.1 x 1072
1 dif. 5.9 x 1073 8.0 x 107* 1.1x 107! 1.3%x 107 5.7 x 1072 1.4 %1072 7.8 x 1073 8.8 x 100 3.1 x 1073
2 dif. 59 x 1073 8.0 x 107 1.1x 107! 1.2x107 43 %1072 1.4 %1072 1.4 %107 5.3 x 107! 43 %1073
3 dif. 5.9 x 1073 8.1 x107* 1.1x 107! 1.2x 1073 4.0 x 102 1.4 %1072 1.4 x 1073 5.5 107! 43 %1073
4 dif. 5.9 x 1073 8.1 x 107 1.1x 107! 1.2x 107 4.0 x 1072 1.4 %1072 1.4 x 1073 5.4 x 107! 43 %1073
1 stp. 16x107°  38x107%  72x102 79x10° 23x102 89x107 18x102 12x102  7.7x 1072
2stp. 48x 106 25x10%  46x102  65x106 22x102  57x10° 1.8x102 12x10° 7.8 x 102
3 stp. 1.9%x 1076 22x107* 29x1072 6.1x10°% 22x1072 3.6x1073 18x1072 12x10? 8.1 x 1072
4 stp. 1.1x 1076 2.1 x 1074 1.9 x 1072 6.0 x 1076 2.2 %1072 2.3 %1073 1.8 x 1072 1.2 x 10? 8.1 x 1072
ET60 9.0x 1071  12x10713 59x1073 20x 107 50x 107" 74 x10°° 1.0 x 107° 2.2 % 107! 1.3x 107
1 dif. 9.0x 107  12x10713 59x1073 20x 107 49x 107" 74x10°° 1.6 x 107 1.2x 1073 22 %1076
2 dif. 9.0x 1071  1.1x1071 59x 1073 1.8x10°5 3.1 x10°"  74x10°° 1.3x1078 1.3 x 1077 22 %1076
3 dif. 9.0x 107  1.1x1071 59x1073 1.6 x1071%  20x10"""  74x10° 24x107*%  56x%x107° 22 %1076
4 dif. 9.0x 1078  1.1x10713 59x1073 1.5x1075  14x10°"  74x10°° 24x1071%  51x107° 22 %1076
1 stp. 49 %1075 76x107* 48 x 1073 1.5x1075 49 %1071 6.0x10°° 1.0 x 1076 2.2 x 107! 1.3x 107
2 stp. 27x10718  51x107*  3.9x 1073 1.2x10715%  49x107"" 49 x10°° 1.0 x 10-6 2.2 % 107! 1.4 %107
3 stp. 1.5x 1075 38x 107" 32x107°  1.1x107% 49x107"" 40x10¢ 1.0x107¢ 22x107' 14x107°
4 stp. 80x 10710 31x107“ 26x107° 1.0x 1075 49 x10°"" 33x10°° 1.0 x 1076 2.2 x 107! 1.4 %107
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three lowest states, respectively), the excited-state
optimized basis sets describe both the ground state and
the first excited state well (errors 9.0 x 1071,
2.0 x 1071, and 1.0 x 107°E;, for N = 60). Apparently,
an even-tempered basis that has been variationally
optimized for a given electronic state also gives a good
description of lower states but a poor description of
higher states — see Fig. 5, where the errors in the four
lowest electronic states as functions of N are plotted,
using the basis sets optimized for the ground state (left
plot) and for the first excited state (right plot). We
emphasize that this holds only for an even-tempered
basis — as we shall see, a fully optimized basis is less
general, giving a poorer description of all states for
which it has not been optimized.

From Table 6, we note that a reasonably accurate
description of the second excited state is obtained by
adding two diffuse functions to the even-tempered basis
optimized for the first-excited state (error 1.3 x 10713
Ep). Clearly, the resulting basis is a rather flexible one,
reproducing the energy of the lowest three states of the
hydrogen atom to within 10~13 E;,.

5.1.2 The expectation value of > and the Fermi-contact
interaction

Turning our attention to (r?), we first note from
Table 6 that, with N = 60, the error in (r?) for the
ground state (1.2 x 107!%a2) is more than 2 orders of
magnitude smaller than the error in (r?) for the first
excited state (5.0 x 1071a2), even though the basis was
variationally optimized for the first excited state. In
fact, the ground-state error in (r?) obtained with the
excited-state basis is even smaller than the error
obtained using the ground-state optimized basis
(2.3 x 10713a3). From the right plot in Fig. 8, we also
see that the excited-state basis sets give a very smooth
convergence of (r?) in the ground state. Clearly, the
flexibility in the outer-valence region provided by the
excited-state basis sets is well suited to the description
of outer-valence properties of the ground state. As
observed for the energy, it is necessary to add several
diffuse functions to describe (r?) accurately in the
second excited state.

With regard to the Fermi-contact interaction, we
first observe that this property is more difficult to de-
scribe than are the energy and (r?) — the errors are both
larger and less predictable. At the same time, the
quality of the description of the Fermi-contact inter-
action is fairly uniform for the three lowest states,
unlike what we observed for the total energy and for
(r?). Somewhat surprisingly, we find that, when diffuse
functions are added to the even-tempered basis with
N = 60, the error in the Fermi-contact interaction of
the second excited state becomes smaller than the error
for the lower states. The convergence of the Fermi-
contact interaction for the four lowest states, calculated
using the excited-state basis sets, is plotted in Fig. 10.
While the ground and first excited states display
smooth convergence, the errors for the higher states
drop dramatically between N = 27 and N = 28, as the
exponents change abruptly — see Fig. 2.

Table 7. Total energy (E,) and the lowest and the highest
exponents of fully optimized basis sets for the first excited state

N Energy o oy
2 —0.1168331639545620 0.01630 0.3211
3 —0.1236675060254134 0.01934 1.6795
4 —0.1246310057307477 0.02007 6.5433
5 —0.1247846962708926 0.02025 22.5608
6 —0.1249503021263345 0.01136 18.6854
7 —0.1249880187190464 0.01205 52.4297
8 —0.1249966322477625 0.01237 137.4150
9 —0.1249987552563279 0.01250 343.7973
10 —0.1249993078240497 0.01256 832.6737
11 —0.1249997270950421 0.00840 743.3744
12 —0.1249999117606748 0.00882 1636.7433

0.01
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0.0001

1e-05
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Fig. 13. The logarithm of the absolute errors of the total energy
(Ep, circles), the expectation value of 72 (a%, squares), and the
Fermi-contact interaction («?Ey, diamonds) for even-tempered
(open symbols, dashed line) and fully optimized (filled symbols,
solid line) as functions of the number of exponents, optimized for
the first excited state

5.2 Fully optimized basis

5.2.1 The structure of the basis set and the total energy

Total energies along with the smallest and largest
exponents of the basis sets fully optimized for the first
excited state are found in Table 7, where, for each N, we
have listed only the solution corresponding to the global
minimum. Although the number of local minima
increases with N, their number is much smaller than in
the even-tempered case — there is one solution for N = 2,
two solutions for 3 < N < 7, and three for 8 < N < 12.
For N > 12, the number of local minima will probably
continue to increase in a stepwise manner.

Comparing the excited-state exponents of the fully
optimized and even-tempered basis sets in Fig. 4, we
note a pattern similar to that observed for the ground
state in Fig. 3. In particular, the fully optimized basis
sets extend slightly further into the outer (diffuse) region
and much further into the inner (core) region of the
hydrogen atom. However, there are significant jumps in
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Table 8. The absolute error in the energy (Ey), (%) (a3), and FC interaction («?Ej,) for the ground state and the first two excited states for
N = 10. The fully optimized basis set (FO10) for the first excited state is augmented with up to four additional diffuse functions and up to

four additional steep functions

Basis Ground state 1st excited state 2nd excited state
Energy (r?) FC Energy () FC Energy () FC

FO10 1.1 x 104 28 x 1073 2.4 x 1072 6.9 x 1077 6.5x 1073 3.3x 1073 1.0 x 1072 1.0 x 102 6.5x 1072
1 dif. 8.4 x 1073 1.8 x 1073 2.5%x 1072 6.6 x 1077 50x 1073 3.3 %1073 45%x 1073 6.8 x 10° 4.1x 1074
2 dif. 7.5%x 1073 5.0 x 1073 2.5%x 1072 5.5% 1077 2.8 x 1073 3.3x 1073 2.2 x107° 1.5x 107! 8.9 x 10~*
3 dif. 71%x107°  81x103 25x102 52x1077 24x10% 33x103 22x10° 15x10°' 9.0x10*
4 dif. 6.9 x 1073 1.1 x 1072 2.5x 1072 5.1 %1077 23x 1073 3.3x 1073 22 x107° 1.4 x 107! 9.0 x 1074
Istp.  LIx10% 28x107° 9.0x107° 62x107  65x10° 14x103 10x102 1.0x102  6.6x 1072
2 stp. LLIx10™% 28x107% 21x10% 62x1077 65x1073 51x10™* 1.0x1072  1.0x 10% 6.7 x 1072
3 stp. 1.1 x10°* 2.8 x 1073 1.6 x 1074 6.2 x 1077 6.5x 1073 23x 1074 1.0 x 102 1.0 x 10? 6.7 x 1072
4 stp. 1.1x10™* 2.8 x 1073 1.2 x 1073 6.2 x 1077 6.5x 1073 1.0 x 1074 1.0 x 1072 1.0 x 10? 6.7 x 1072

the exponents going from N =5 to N =6 and from
N =10 to N = 11, where solutions of a different char-
acter become the global minimum, a behaviour similar
to what Jensen [6] found for the hydrogen molecule. We
recall that, for the excited-state even-tempered basis sets,
a similar jump occurs between N = 27 and N = 28 but
does not show up in Fig. 4 since the plot extends only to
N =12.

Comparing Tables 6 and 8, we find that, for N = 10,
the error in the total energy of the first excited state is
more than an order of magnitude smaller in the fully
optimized basis than in the even-tempered one — see also
Fig. 13. The ground state, by contrast, is poorly de-
scribed by the fully optimized excited-state basis. Sur-
prisingly, the addition of steep functions does not reduce
the error in the ground-state energy, whereas diffuse
functions give a slightly better description. Moreover,
the addition of diffuse functions is essential for an
accurate description of the second excited state. Finally,
since the underlying basis set was optimized for the first
excited state, the augmentation with diffuse or steep
functions has little impact on the description of the first
excited state, reducing the error in the energy only
marginally.

5.2.2 The expectation value of 7> and the Fermi-contact
interaction

From Fig. 13, it is clear that the convergence of (r?) in
the fully optimized basis is somewhat erratic. In fact, for
N =5, the error in the fully optimized basis is larger
than the error in the even-tempered basis, although the
overall convergence is clearly faster in the fully-opti-
mized case. From Table 8, we note that the description
of (r?) is fairly accurate for the two lowest states, even
without basis-set augmentation; however, augmentation
with diffuse functions is crucial to the description of (r?)
for the second excited state, although convergence is still
slow. Strangely enough, for the ground state, the
addition of two or more diffuse functions causes the
error in (r?) to increase rather than to decrease. In fact,
with four diffuse functions added, the error in (1) is
about an order of magnitude larger than without
augmentation. Finally, we note that the addition of
steep functions has no effect on (r?), for any of the states
considered here.

For small N, we see from Fig. 13 that the conver-
gence of the Fermi-contact interaction is similar to that
of (r?). For large N, however, it becomes much slower
than for the other properties — see Table 6. From
Table 8, we note that the addition of steep functions
reduces the error in the Fermi-contact interaction
slightly, for the ground state as well as the first excited
state. However, as previously found, diffuse functions
are needed for an accurate description of the Fermi-
contact interaction of the second excited state. Indeed,
upon the addition of a single diffuse function, the error
for the second excited state becomes 7 order of magni-
tude smaller than for the first excited state and 2 orders
of magnitude smaller than for the ground state; for these
two states, three steep functions are needed for the same
accuracy.

6 Conclusions

We have carried out a detailed analysis of the errors
arising in the description of the hydrogen atom by
expanding the wave function in GTOs. For the ground
state and the first excited state, basis sets were varia-
tionally optimized in an even-tempered and fully uncon-
strained manner. For the even-tempered basis sets,
expansions containing up to 60 s functions have been
determined, yielding errors of about 10~ Ej, for the two
lowest S states. Likewise, fully optimized basis sets
containing up to 12 GTOs have been determined, with
errors of about 1077E,. From these two types of
variationally determined basis sets, additional sets were
generated by augmentation with diffuse and steep
GTOs, whose exponents were chosen in an even-
tempered manner.

For the ground state, only one minimum is usually
observed, making the basis-set optimization fairly
straightforward. By contrast, a large number of local
minima exist for the excited-state basis sets, in particular
for the even-tempered expansion. The convergence of
the exponents is fairly smooth, but in a few cases abrupt
changes occur as the global minimum changes its char-
acter. The existence of multiple minima complicates the
optimization of basis sets and constitutes a potentially
difficult problem for systems more complicated than the
hydrogen atom.
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Using these basis sets, we examined the convergence
of the total energy, the kinetic energy, the expectation
value of 72, and the Fermi-contact interaction at the
nucleus for the four lowest S states of the hydrogen
atom. The convergence of these properties is mostly
smooth, although oscillations are observed in a few cases
— in particular, for (+?). In general, (r*) converges more
rapidly than the Fermi-contact interaction, which re-
quires a large number of GTOs for an accurate
description. For a similar accuracy in the calculations,
the even-tempered basis sets must typically contain two
or three GTOs more than the fully optimized basis sets,
for properties as well as energies.

A basis set optimized for a given electronic state is ill
suited to the description of higher electronic states, both
for the total energy and for properties. The lower elec-
tronic states, by contrast, are reasonably well described
by basis sets optimized for a given electronic state. This
is particularly true for the even-tempered basis sets,
which, for the hydrogen atom at least, appear to be more
universal than the fully optimized basis sets. For an
accurate description of higher states, augmentation with
diffuse functions is essential — not only for the energy
and for (r?), but in fact also for the Fermi-contact
interaction. Apparently, for an accurate description of
the density at the nucleus, the overall shape of the wave
function must be correct. Unlike the augmentation with
diffuse functions, the augmentation with steep functions

has usually little impact on the description. In fact, the
only property that benefits from steep functions is the
Fermi-contact interaction, whose description is some-
what improved by their addition.
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